Lie ideal and Generalized (σ, τ) -Derivations in Prime Rings

Dr. C. Jaya Subba Reddy

Associate Professor, Dept. of Mathematics, S. V. University, Tirupati – 517502, Andhra Pradesh, India.

C. Venkata Sai Raghavendra Reddy

Amrita Vishwa Vidyapeetham, Bengaluru campus, Bangalur, Karnataka,560035, India.

K. Nagesh

Research Scholar, Rayalaseema University, Kurnool, Andhra Pradesh, India.

Abstract: Let R be a prime ring, I be a non-zero lie ideal of R.Suppose that $F: R \to R$ be a generalized (σ, τ) -derivation on R associated with (σ, τ) -derivation $g: R \to R$ respectively and $\tau(I) \neq 0$. In this paper, we studied the following identities in prime rings:

(i) $F(uv) \pm u\sigma(v) = 0$; then $g(U) = (0)$ and $F(u) = \pm u$ for all $u \in U$

(ii) $F(uv) \pm \sigma(vu) = 0$; then $U \subseteq Z(R)$. $g(U) = (0)$ and $F(u) = \pm u$ for all $u \in U$

(iii) $F(u)F(v) \pm \sigma(uv) = 0$ $g(U) = (0)$ and $U \subseteq Z(R)$ for all $u \in U$

(iv) $F(u)F(v) \pm \sigma(vu) = 0$ $g(U) = (0)$ and $U \subseteq Z(R)$ for all $u \in U$.

Keywords: Prime ring, Derivation, Generalized derivation, (σ, τ) -derivation, Generalized (σ, τ) -derivation.

1. INTRODUCTION

Bresar in [2], first time introduced the notion of generalized derivation. In 1992, Daif et al. in [4], proved a result which is given as let R be a semiprime ring, I be a non zero ideal of R and d be a derivation on R such that $d([x, y]) = [x, y]$, for all $x, y \in I$, then $I \subseteq Z(R)$. In 2002, Ashraf and Rehman [1] extended the result of Daif et al. [4] by replacing ideal to lie ideal. In 2003, Quadri et al. in [7] extended the result of Ashraf et al. [1] on generalized derivation given as let R be a prime ring with characteristic different from two, I be a nonzero ideal of R and F be a generalized derivation on R associated with a derivation d on R such that $F([x, y]) =$ [x, y], for all $x, y \in I$, then R is commutative. Golbasi et al. in [5] extended the result of Quadri et al. [7] by replacing ideal to lie ideal. Recently, S.K. Tiwari et al. in [8] studied Multiplicative (generalized)-derivation in semiprime rings. Further ChiragGarg et al. in [3] studied on generalized (α, β) -derivations in prime rings. In this paper we extended of S.K. Tiwari et al. in [8], we have proved some results on generalized (σ, τ) derivations in prime rings.

2. PRELIMINARIES

Throughout this paper R denote an associative ring with center Z. Recall that a ring R is prime if $xRy = \{0\}$ implies $x = 0$ or $y = 0$. For any $x, y \in R$, the symbol $[x, y]$ stands for the commutator $xy - yx$ and the symbol (xoy) denotes the anticommutator $xy + yx$. Let σ , τ be any two automorphisms of R. For any $x, y \in R$, we set $[x, y]_{\sigma,\tau} = x\sigma(y) - \tau(y)x$ and $(xoy)_{\sigma,\tau} = x\sigma(y) + \tau(y)x$. An additive mapping $d: R \to R$ is called a derivation if $d(xy) = d(x)y + xd(y)$ holds for all $x, y \in R$. An additive mapping $d: R \to R$ is called a (σ, τ) -derivation if $d(xy) = d(x)\sigma(y) + \tau(x)d(y)$ holds for all $x, y \in R$. R. An additive mapping $F: R \to R$ is called a generalized derivation, if there exists a derivation $d: R \to R$ such that $F(xy) =$ $F(x)y + xd(y)$ holds for all $x, y \in R$. An additive mapping $F: R \to R$ is said to be a generalized (σ, τ) -derivation of R, if there exists a (σ, τ) -derivation $d: R \to R$ such that $F(xy) = F(x)\sigma(y) + \tau(x)d(y)$ holds for all $x, y \in R$.

Throughout this paper, we shall make use of the basic commutator identities:

 $[x, yz] = y[x, z] + [x, y]z,$

 $[xy, z] = [x, z]y + x[y, z],$

$$
(xo(yz)) = (xoy)z - y[x, z] = y(xoz) + [x, y]z,
$$

 $[x y, z]_{\sigma, \tau} = x [y, z]_{\sigma, \tau} + [x, \tau(z)] y = x [y, \sigma(z)] + [x, z]_{\sigma, \tau} y,$

 $[x, yz]_{\sigma,\tau} = \tau(y)[x, z]_{\sigma,\tau} + [x, y]_{\sigma,\tau}\sigma(z), (x\sigma(yz))_{\sigma,\tau} = (x\sigma y)_{\sigma,\tau}\sigma(z) - \tau(y)[x, z]_{\sigma,\tau} = \tau(y)(x\sigma z)_{\sigma,\tau} + [x, y]_{\sigma,\tau}\sigma(z),$

$$
(xy)oz)_{\sigma,\tau} = x(yoz)_{\sigma,\tau} - [x, \tau(z)]y = (xoz)_{\sigma,\tau}y + x[y, \sigma(z)].
$$

3. MAIN TEXT

Lemma 1: [Bergen et al. (1981), Lemma 3] Let R be a 2-torsion free prime ring and U be a Lie ideal of R . If $U \nsubseteq Z(R)$, then $C_R(U) = Z(R)$.

Lemma 2: [Bergen et al. (1981), Lemma 4] If $U \not\subseteq Z(R)$ is a Lie ideal of a 2-torsion free prime ring Rand $a, b \in R$ are such that $a \cup b = (0)$, then $a = 0$ or $b = 0$.

Lemma 3: [Rehman (2002), Lemma 2.6] Let R be a 2-torsion free prime ring and U be a Lie ideal of R . If U is a commutative Lie ideal of R, then $U \nsubseteq Z(R)$.

Theorem 1: Let R be a 2-torsion free prime ring and U be a non zero square closed Lie ideal of R . If R admits a generalized (σ, τ) -derivatiom $F: R \to R$ associated with the (σ, τ) -derivation the map $g: R \to R$ such that $F(uv) \pm u\sigma(v) = 0$, for all $u, v \in U$, then $g(U) = (o)$ and $F(U) = \pm U$ for all $u \in U$.

Proof: Assume first that $F(uv) - u\sigma(v) = 0$, for all $u, v \in U$ (1)

We replace v by2 vw in (1), we get

$$
F(2uvw) - u\sigma(2vw) = 0
$$

$$
F(2uv)\sigma(w) + \tau(2uv)g(w) - u\sigma(2v)\sigma(w) = 0
$$

$$
2(F(uv) - u\sigma(v)\sigma(w) + \tau(uv)g(w)) = 0
$$

Since R is 2-torsion free prime ring, we get

$$
(F(uv) - u\sigma(v)\sigma(w) + \tau(uv)g(w)) = 0
$$

Using equation (1), in the above equation we get

$$
\tau(uv)g(w) = 0, \text{ for all } u, v, w \in U
$$
\n⁽²⁾

We replace u by $[u, r]$, $r \in R$ in equation(2), we get

$$
\tau([u,r]v)g(w)=0
$$

$$
\tau(urv - ruv)g(w) = 0
$$

Using equation (2), the above equation become

$$
\tau(urv)g(w) = 0
$$

$$
\tau(u)\tau(r)\tau(v)g(w) = 0
$$

$$
\tau(u)R\tau(v)g(w)=0
$$

Since R is prime ring and U is a non zero lie ideal of R , we get

$$
\tau(v)g(w) = 0, \text{for all } u, v \in U
$$
\n⁽³⁾

We replace v by $[v, r]$, $r \in R$ in equation(3), we get

$$
\tau([v,r])g(w) = 0
$$

$$
\tau(vr - rv)g(w) = 0
$$

$$
\tau(vr)g(w) - \tau(rv)g(w) = 0
$$

$$
\tau(v)\tau(r)g(w) - \tau(r)\tau(v)g(w) = 0
$$

Using equation (3), the above equation becomes

$$
\tau(v)\tau(r)g(w) = 0
$$

$$
\tau(v)Rg(w) = 0
$$

Since R is prime ring and U is non zero Lie ideal of R , we have

$$
g(U) = 0 \tag{4}
$$

 $F(uv) = F(u)\sigma(v) + \tau(u)g(v)$

From equation (4), we get

$$
F(uv) = F(u)\sigma(v)
$$
, for all $u, v \in U$ (5)

Substitute equation (5) in equation (1) , we get

$$
F(u)\sigma(v)-u\sigma(v)=0
$$

 $(F(u) - u)\sigma(v) = 0$, for all $u, v \in U$ (6)

We replace v by $[v, r]$, $r \in R$ in equation (6), we get

$$
(F(u) - u)\sigma([v, r]) = 0
$$

$$
(F(u) - u)(\sigma(vr) - \sigma(rv)) = 0
$$

$$
(F(u) - u)\sigma(v)\sigma(r) - (F(u) - u)\sigma(r)\sigma(v) = 0
$$

Using equation (6) in the above equation, we get

$$
(F(u) - u)\sigma(r)\sigma(v) = 0
$$

 $(F(u) - u)R\sigma(v) = 0$, for all $u, v \in U$

Using prime ness of R we conclude that

 $F(u) = u$, for all $u \in U$

In similar manner, we can prove the result for the cause $F(uv) + u\sigma(v) = 0$, for all $u, v \in U$.

There by the proof of the theorem is completed.

Theorem2: LetR be a 2-torsion free prime ring and U be a non zero square closed Lie ideal of R . If R admits a generalized (σ, τ) - derivation $F: R \to R$ associated with the (σ, τ) -derivation the map $g: R \to R$ such that $F(uv) \pm \sigma(vu) = 0$, for all $u, v \in U$, then $U \subseteq Z(R)$, $g(U) = (o)$ and $F(U) = \pm \sigma(U)$, for all $u \in U$.

Proof: suppose $U \nsubseteq Z(R)$

By the assumption, we have

 $F(uv) - \sigma(uv) = 0$, for all $u, v \in U$ (7)

We replace v by $2vw$ in (7), we get

 $F(2uvw) - \sigma(2uvw) = 0$

 $F(2uv)\sigma(w) + \tau(2uv)g(w) - \sigma(2uvw) = 0$

Using 2-torsion free in (7) and using (6), we get.

$$
\sigma(vu)\sigma(w) + \tau(uv)g(w) - \sigma(uvw) = 0
$$

$$
\sigma(vuw - vwu) + \tau(uv)g(w) = 0
$$

$$
\sigma(v)\sigma[u, w] + \tau(uv)g(w) = 0, \text{ for all } u, v, w \in U
$$
\n
$$
(8)
$$

We replace w by u in (8), we get

$$
\tau(uv)g(u) = 0 \text{,for all } u, v \in U
$$
\n⁽⁹⁾

We replace v by rv in equation (9), we get

$$
\tau(urv)g(u) = 0
$$

$$
\tau(u)\tau(r)\tau(v)g(u) = 0
$$

$$
\tau(u)R\tau(v)g(u) = 0
$$

 R is prime ring and U is non zero lie ideal of R

$$
\tau(v)g(u) = 0, \text{ for all } u, v \in U
$$
\n⁽¹⁰⁾

Again we replace vby $vr, r \in R$ in equation (10), we get

$$
\tau (vr)g(u) = 0
$$

$$
\tau (v)\tau (r)g(u) = 0
$$

$$
\tau (v)Rg(u) = 0
$$

Since R is prime and U is non zero lie ideal of R

$$
g(U) = 0, \text{ for all } u \in U
$$
\n⁽¹¹⁾

We replace w by v and using equation (11) in equation (8), we get

 $\sigma(v)\sigma[u, v] = 0$, for all $u, v \in U$ (12)

We replace u by 2wu in equation (12), we get

 $\sigma(v)\sigma[2wu, v] = 0$ $\sigma(v[2wu, v]) = 0$

Using 2-torsaion free ness in above equation

$$
\sigma(v[wu, v]) = 0
$$

$$
\sigma(vw[u, v] + v[w, v]u) = 0
$$

$$
\sigma(vw)\sigma([u,v]+\sigma(v)\sigma([w,v])\sigma(u)=0
$$

Using (12), the above equation becomes

$$
\sigma(v)\sigma(w)\sigma([u,v]=0
$$

$$
\sigma(v)R\sigma[u,v]=0
$$

Since R is prime ring and U is non zero lie ideal of R , we get

 $\sigma[u, v] = 0$, since σ is an automorphism

$$
[u,v]=0
$$

Using lemma 3,we get $U \subseteq Z(R)$, a contradiction

Therefore, we must have $U \subseteq Z(R)$

 $F(uv) = F(u)\sigma(v) + \tau(u)g(v) = F(u)\sigma(v)$

Given that $F(uv) - \sigma(vu) = 0$

$$
F(u)\sigma(v) - \sigma(uv) = 0
$$

$$
(F(u) - \sigma(u))\sigma(v) = 0
$$

We replace ν by rv in the above equation, we get

$$
(F(u) - \sigma(u))\sigma(rv) = 0
$$

$$
(F(u) - \sigma(u))\sigma(r)\sigma(v) = 0
$$

 $(F(u) - \sigma(u))R\sigma(v) = 0$. Since R is primering and σ is an automorphism

 $F(u) = \sigma(u)$ in the similar manner, we can prove our conclusions when $F(uv) + \sigma(vu) = 0$, for all $u, v \in U$, there by the proof of the theorem is completed.

Theorem 3: Let R be a 2-torsion free prime ring and U be a non zero square closed Lie ideal of R . If R admits a generalized (σ, τ) -derivatiom $F: R \to R$ associated with the (σ, τ) -derivation the map $g: R \to R$ such that $F(u)F(v) \pm \sigma(uv) = 0$, for all $u, v \in U$, then $g(U) = (0)$ and $U \subseteq Z(R)$, and $[F(u), \sigma(u)] = 0$, for all $u \in U$.

Proof: $F(u)F(v) - \sigma(uv) = 0$, for all $u, v \in U$ (13)

We replace v by 2 vw in equation (13), we get

$$
F(u)F(2vw) - \sigma(2uvw) = 0
$$

$$
F(u)F(2v)\sigma(w) - \sigma(2uvw) + 2F(u)\tau(v)g(w) = 0, \text{ for all } u, v, w \in U
$$

Using 2-torsion freeness the above equation becomes

$$
(F(u)F(v) - \sigma(uv))\sigma(w) + F(u)\tau(v)g(w) = 0
$$

Using (13) in the above equation becomes

$$
F(u)\tau(v)g(w) = 0, \text{ for all } u, v, w \in U
$$
\n
$$
(14)
$$

Left multiply equation (14) by $F(t)$, we get

$$
F(t)F(u)\tau\{v\}g(w) = 0, \text{for all } u, v, w \in U
$$
\n
$$
(15)
$$

Using (13) in (15) , we get

 $\sigma(tu)\tau(v)g(w) = 0$, for all $u, v, w \in U$ (16)

We replace t by $[t, r]$, $r \in R$ in the equation (16), we get

$$
\sigma([t, r]u)\tau(v)g(w) = 0
$$

$$
(\sigma(tru) - \sigma(rtu))\tau(v)g(w) = 0
$$

$$
(\sigma (tru) - \sigma (rtu))\tau (v)g(w) =
$$

Using (16), the above equation becomes

$$
\sigma(t)\sigma(r)\sigma(u)\tau(v)g(w)=0
$$

$$
\sigma(t)R\sigma(u)\tau(v)g(w)=0
$$

Since R is prime ring and U is a non zero lie ideal of R we find that

$$
\sigma(u)\tau(v)g(w) = 0 \text{, for all } u, v, w \in U
$$
\n
$$
(17)
$$

Following the same technique twice we finally we get

$$
g(U) = (0), \text{for all } u, v, \in U
$$
\n⁽¹⁸⁾

Now $F(uv) = F(u)\sigma(v) + \tau(u)g(v)$

Using (18), in the above equation, we get

$$
F(uv) = F(u)\sigma(v), \text{ for all } u, v \in U
$$
\n⁽¹⁹⁾

We replace u by $2uv$ in (13), we get

$$
F(u2v)F(v) - \sigma(2uv^2) = 0
$$

$$
F(u)\sigma(2v)F(v) - \sigma(2uv^2) = 0
$$

Since R is 2-torsion free ring, we obtain

$$
F(u)\sigma(v)F(v) - \sigma(uv^2) = 0, \text{ for all } u, v \in U
$$
\n
$$
(20)
$$

Right multiply by $\sigma(v)$ to equation (13), we get

$$
F(u)F(v)\sigma(v) - \sigma(uv^2) = 0, \text{ for all } u, v \in U
$$
\n(21)

Subtracting equation (20) with equation (21), we get

$$
F(u[F(v), \sigma(v)] = 0, \text{ for all } u, v \in U
$$
\n
$$
(22)
$$

Using u by 2uw and using (19), we get

$$
F(u2w[F(v),\sigma(v)]=0
$$

 $2F(u)\sigma(w)[F(v), \sigma(v)] = 0$

Using 2-torsion free ringof *, we have*

 $F(u)\sigma(w)[F(u), \sigma(v)] = 0$

It follows that $[F(u), \sigma(u) \cup [F(u), \sigma(u)]] = 0$

Lemma 2 gives $[F(u), \sigma(u)] = 0$

And the same condition is obtain if $U \subseteq Z(R)$

In similar manner we can prove the same conclusion holds for $F(u)F(v) + \sigma(uv) = 0$, for all $u, v \in U$.

Theorem 4: Let R be a 2-torsion free prime ring and U be a non zero square closed Lie ideal of R . If R admits a generalized (σ, τ) -derivatiom $F: R \to R$ associated with the (σ, τ) -derivation the map $g: R \to R$ such that $F(u)F(v) \pm \sigma(v \ u) = 0$, for all $u, v \in U$, then $U \subseteq Z(R)$, and $g(U) = (0)$, for all $u \in U$.

Proof: suppose on contrary $U \nsubseteq Z(R)$

We assume that

 $F(u)F(v) - \sigma(uv) = 0$, for all $u, v \in U$ (23)

We replace ν by 2 ν u in equation (23), we get

 $F(u)F(2vu) - \sigma(2vu^2) = 0$

$$
F(u)F(2v)\sigma(u) - 2\sigma(vu^2) + 2F(u)\tau(v)g(u) = 0
$$

 $(F(u)F(2v) - \sigma(2vw))\sigma(u) + 2F(u)\tau(v)g(u) = 0$, for all $u, v, w \in U$ (24)

Using (23) in (24) , we get

$$
2F(u)\tau(v)g(u)=0
$$

Using 2-torsion free ring,we get

 $F(u)\tau(v)g(u) = 0$, for all $u, v, w \in U$ (25)

Left multiplicative equation (25) by $F(w)$ and using

 $F(w)F(u)\tau(v)g(u) = 0$ $\sigma(uw)\tau(v)g(u) = 0$ $\sigma(u)\sigma(w)\tau(v)g(u) = 0$ $\sigma(u)\sigma(w)\tau(v)g(u) = 0$

 $\sigma(u)U(v)g(u) = 0$

By lemma2 we have for each $u \in U$ either $\sigma(u) = 0$ ie $U = 0$ or $\tau(v)g(u) = 0$

We replace v by vr in the above equation

$$
\tau(v)\tau(r)g(u) = 0
$$

$$
\tau(v)Rg(u) = 0
$$

Since R is prime, we get

 $g(U) = 0$, for all $u \in U$

Now replacing v by v^2 and using the fact $g(U) = 0$, we get

$$
F(u)F(v)\sigma(v) - \sigma(v^2u) = 0, \text{ for all } u, v \in U
$$
\n
$$
(26)
$$

Right multiplying equation (23) by $\sigma(v)$ and substracting from (26), we get

 $\sigma(v)\sigma[v, u] = 0$ then by the same argument as given in the proof the theorem 2, we have

 $U \subseteq Z(R)$.

 $F(u)F(v) - \sigma(uv) = 0$, for all $u, v \in U$

This is view of theorem 3, we get $g(U) = (0)$

In the similar manner, we can prove that the same conclusion holds for $F(u)F(v) + \sigma(vu) = 0$ for all $u, v \in U$.

References:

- [1] Ashraf, M., Rehman, N.: "On commutativity of rings with derivations", Results Math. 42(2002), 3-8.
- [2] Bresar, M.: "On the distance of the composition of two derivations to the generalized derivations", Glasgow Math. J. 33(1991), 89-93.
- [3] Charg, G, Sharma, R. K.: "On generalized (α, β) derivations in prime rings", Rend. Circ. Mat. Palermo, doi: 10.1007/s12215-015-0227-5(2015), 1-10.
- [4] Daif, M.N., Bell, H.E.: "Remarks on derivations on semiprime rings", Internat J. Math. Math. Sci. 15(1992), 205-206.
- [5] Golbasi, O., Koc, E.: "Generalized derivations of Lie ideals in prime rings", Turk. J. Math. 35(2011), 23-28.
- [6] Lee, P. H., Lee, T. K.: "Lie ideals of prime rings with derivations", Bull.Inst.Math.Acad.Sinica 11(1983),no.1, 75-79.
- [7] Quadri, M.A., Khan, M.S., Rehman,N.: "Generalized derivations and commutativity of rings. Indian J. Pure App. Math. 34(2003), 1393-1396.
- [8] Tiwari, S. K., Sharma, R. K., Dhara, B.: "Multiplicative (generalized)-derivation in semiprime rings", Beitr Algebra Geom, doi: 10.1007/s13366-015-0279-x(2015), 1-15.